PRODUCT INFORMATION⁽¹⁾

Model(s): Information to identify the model(s) to which the information relates:

Outdoor: PUZ-M125VKA

Indoor: PEAD-M125JA

Outdoor side heat exchanger of air conditioner: air

Indoor side heat exchanger of air conditioner: air

Type: compressor driven vapour compression

If applicable: driver of compressor: electric motor

Symbol	Value	Unit		Item	Symbol	Value	Unit	
P _{rated,c}	12,10	kW		Seasonal space cooling energy efficiency	$\eta_{s,c}$	193,1	%	
Declared cooling capacity for part load at given outdoor temperatures Tj and indoor 27°/19 °C (dry/wet bulb)				Declared energy efficiency ratio for part load at given outdoor temperatures Tj				
Pdc	12,10	kW		Tj = + 35 °C	EER _d	3,01	_	
Pdc	9,00	kW		Tj = + 30 °C	EER _d	4,40	_	
Pdc	5,80	kW		Tj = + 25 °C	EER _d	5,50	_	
Pdc	6,00	kW		Tj = + 20 °C	EER _d	7,10	_	
C _{dc}	0,25	_						
	P _{rated,c} part load at g 27°/19 °C (dr Pdc Pdc Pdc Pdc Pdc Pdc	Prated,c12,10r part load at given outdoor t 27°/19 °C (dry/wet bulb)Pdc12,10Pdc9,00Pdc5,80Pdc6,00	Prated,c12,10kWPart load at given outdoor temperatures Tj 27°/19 °C (dry/wet bulb)kWPdc12,10kWPdc9,00kWPdc5,80kWPdc6,00kW	Prated,c 12,10 kW P part load at given outdoor temperatures Tj 27°/19 °C (dry/wet bulb) Pdc 12,10 kW Pdc 12,10 kW Pdc 5,80 kW Pdc 6,00 kW Image: state s	$P_{rated,c}$ 12,10kWSeasonal space cooling energy efficiencypart load at given outdoor temperatures TjDeclared energy at given outPdc12,10kWTj = + 35 °CPdc9,00kWTj = + 30 °CPdc5,80kWTj = + 25 °CPdc6,00kWTj = + 20 °C	$P_{rated,c}$ 12,10kWSeasonal space cooling energy efficiency $\eta_{s,c}$ $p_{rated,c}$ 12,10kWSeasonal space cooling energy efficiency $\eta_{s,c}$ $part load at given outdoor temperatures TjDeclared energy efficiency rat given outdoor tempDeclared energy efficiency rat given outdoor tempPdc12,10kWTj = + 35 °CEER_dPdc9,00kWTj = + 30 °CEER_dPdc5,80kWTj = + 25 °CEER_dPdc6,00kWTj = + 20 °CEER_dImage: temperature temperature temperature temperatures tempera$	$P_{rated,c}$ 12,10kWSeasonal space cooling energy efficiency $\eta_{s,c}$ 193,1 $P_{rated,c}$ 12,10kWSeasonal space cooling energy efficiency $\eta_{s,c}$ 193,1 $part load at given outdoor temperatures TjDeclared energy efficiency ratio for parat given outdoor temperatures TjPdc12,10kWTj = + 35 °CEERd3,01Pdc9,00kWTj = + 30 °CEERd4,40Pdc5,80kWTj = + 25 °CEERd5,50Pdc6,00kWTj = + 20 °CEERd7,10Image: temperature temp$	

Off mode	P _{OFF}	0,020	kW	1 1	Crankcase heater mode	Р _{ск}	0,000	kW
Thermostat-off mode	P _{to}	0,017	kW		Standby mode	P_{SB}	0,020	kW

Other items

Otter terts									
Capacity control	variable				For air-to-air air conditioner: air flow rate, outdoor measured	_	5160	m³/h	
Sound power level, indoor/outdoor	L _{WA}	66,0/72,0	dB						
If engine driven: Emissions of nitrogen oxides	NO _x (**)	-	mg/kWh fuel input GCV						
GWP of the refrigerant		675	kg CO _{2 eq} (100 years)						
Contact details	MITSUBISHI ELECTRIC CORPORATION SHIZUOKA WORKS 3-18-1, Oshika, Suruga-ku, Shizuoka 422-8528, Japan								

(*) If C_{dc} is not determined by measurement then the default degradation coefficient air conditioners shall be 0,25. **) From 26 September 2018.

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

(1) This information is based on COMMISSION REGULATION (EU) 2016/2281

Recycle

Your MITSUBISHI ELECTRIC product is designed and manufactured with high quality materials and components which can be recycled and reused.

Electrical and electronic equipment, at their end-of-life, should be disposed of separately from your household waste. Please, dispose of this equipment at your local community waste collection/recycling center.

In the European Union there are separate collection systems for used electrical and electronic product.

Please, help us to conserve the environment we live in!

PRODUCT INFORMATION(¹)

Information to identify the model(s) to which the information relates:

Outdoor: PUZ-M125VKA

Indoor: PEAD-M125JA

Outdoor side heat exchanger of heat pump: air

Indoor side heat exchanger of heat pump: air

Indication if the heater is equipped with a supplementary heater: no

If applicable: driver of compressor: electric motor

Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional.

Item	Symbol	Value	Unit		Item	Symbol	Value	Unit	
Rated heating capacity	$P_{rated,h}$	13,50	kW		Seasonal space heating energy efficiency	η _{s,h}	152,7	%	
Declared heating capacity for part load at indoor temperature 20 °C and outdoor temperature Tj					Declared coefficient of performance for part load at given outdoor temperatures Tj				
Tj = − 7 °C	Pdh	7,50	kW		Tj = − 7 °C	COPd	3,10	_	
Tj = + 2 °C	Pdh	4,60	kW		Tj = + 2 °C	COPd	3,80	_	
Tj = + 7 °C	Pdh	4,15	kW		Tj = + 7 °C	COP _d	4,90	_	
Tj = + 12 °C	Pdh	4,90	kW		Tj = + 12 °C	COPd	5,90	-	
T _{biv} = bivalent temperature	Pdh	8,50	kW		T _{biv} = bivalent temperature	COP _d	2,00	_	
T_{OL} = operation limit	Pdh	6,00	kW		T _{oL} = operation limit	COPd	2,00	_	
For air-to-water heat pumps: Tj = -15 °C (if T _{OL} < -20 °C)	Pdh	_	kW		For water-to-air heat pumps: Tj = -15 °C (if T _{oL} < -20 °C)	COPd	-	_	
Bivalent temperature	T_{biv}	-10	°C		For water-to-air heat pumps: Operation limit temperature	T _{ol}	-	°C	
Degradation co-efficient heat pumps(**)	C_{dh}	0,25	_						
Power consumption in	n modes oth	her than 'ac	tive mode'		Supplementary heater				
Off mode	P_{OFF}	0,020	kW		Back-up heating capacity (*)	elbu	0,000	kW	
Thermostat-off mode	P _{TO}	0,015	kW		Type of energy input				
Crankcase heater mode	Р _{ск}	0,000	kW		Standby mode	P _{SB}	0,020	kW	
			Oth	er it	ems				
		0 0			1	1	1		

Capacity control	variable				For air-to-air heat pumps: air flow rate, outdoor measured	-	5520	m³/h	
Sound power level, indoor/outdoor	L _{WA}	66,0/74,0	dB		For water/brine-to-air heat pumps: Rated brine or water flow rate, outdoor side heat exchanger			_	
Emissions of nitrogen oxides (if applicable)	NO _x (***)	-	mg/kWh fuel input GCV			-	_	m³/h	
GWP of the refrigerant		675	kg CO _{2 eq} (100 years)						
Contact details	MITSUBISHI ELECTRIC CORPORATION SHIZUOKA WORKS 3-18-1, Oshika, Suruga-ku, Shizuoka 422-8528, Japan								

^(*) (**) If C_{dh} is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. (***) From 26 September 2018.

Where information relates to multi-split heat pumps, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

⁽¹⁾ This information is based on COMMISSION REGULATION (EU) 2016/2281