PRODUCT INFORMATION(1)

Model(s): Information to identify the model(s) to which the information relates:

Outdoor: PUHZ-P140VKA

Indoor: PLA-RP140EA

Outdoor side heat exchanger of air conditioner: air

Indoor side heat exchanger of air conditioner: air

Type: compressor driven vapour compression

If applicable: driver of compressor: electric motor

Item	Symbol	Value	Unit		Item	Symbol	Value	Unit		
Rated cooling capacity	P _{rated,c}	13,60	kW		Seasonal space cooling energy efficiency	η _{s,c}	230,2	%		
Declared cooling capacity for part load at given outdoor temperatures Tj and indoor 27°/19 °C (dry/wet bulb)					Declared energy efficiency ratio for part load at given outdoor temperatures Tj					
Tj = + 35 °C	Pdc	13,60	kW		Tj = + 35 °C	EERd	2,50	_		
Tj = + 30 °C	Pdc	10,00	kW		Tj = + 30 °C	EERd	4,20	_		
Tj = + 25 °C	Pdc	6,40	kW		Tj = + 25 °C	EER _d	7,50	_		
Tj = + 20 °C	Pdc	5,70	kW		Tj = + 20 °C	EER _d	10,50	_		
Degradation										
co-efficient for air conditioners(*)	C _{dc}	0,25	—							
	P	ower consi	umption in mo	ode	s other than 'active mod	e'				
Power consumption in modes other than 'active mode'										

Off mode	P_{OFF}	0,020	kW	Crankcase heater mode	Рск	0,000	kW
Thermostat-off mode	P _{to}	0,003	kW	Standby mode	P _{SB}	0,020	kW

Other items

Capacity control	variable				For air-to-air air conditioner: air flow rate, outdoor measured	-	5160	m³/h
Sound power level, indoor/outdoor	L _{WA}	65,0 / 75,0	dB					
If engine driven: Emissions of nitrogen oxides	NO _x (**)	_	mg/kWh fuel input GCV					
GWP of the refrigerant		2088	kg CO _{2 eq} (100 years)					
Contact details	MITSUBISHI ELECTRIC CORPORATION SHIZUOKA WORKS 3-18-1, Oshika, Suruga-ku, Shizuoka 422-8528, Japan							

(*) If C_{dc} is not determined by measurement then the default degradation coefficient air conditioners shall be 0,25. **) From 26 September 2018.

Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

(1) This information is based on COMMISSION REGULATION (EU) 2016/2281

Recycle

Your MITSUBISHI ELECTRIC product is designed and manufactured with high quality materials and components which can be recycled and reused.

Electrical and electronic equipment, at their end-of-life, should be disposed of separately from your household waste. Please, dispose of this equipment at your local community waste collection/recycling center.

In the European Union there are separate collection systems for used electrical and electronic product.

Please, help us to conserve the environment we live in!

PRODUCT INFORMATION(1)

Information to identify the model(s) to which the information relates:

Outdoor: PUHZ-P140VKA

Indoor: PLA-RP140EA

Outdoor side heat exchanger of heat pump: air

Indoor side heat exchanger of heat pump: air

Indication if the heater is equipped with a supplementary heater: no

If applicable: driver of compressor: electric motor

Parameters shall be declared for the average heating season, parameters for the warmer and colder heating seasons are optional.

Item	Symbol	Value	Unit		Item	Symbol	Value	Unit	
Rated heating capacity	$P_{rated,h}$	15,00	kW		Seasonal space heating energy efficiency	$\eta_{\text{s},\text{h}}$	160,1	%	
Declared heating capacity for part load at indoor temperature 20 °C and outdoor temperature Tj					Declared coefficient of performance for part load at given outdoor temperatures Tj				
Tj = - 7 °C	Pdh	8,40	kW		Tj = – 7 °C	COP _d	2,60	_	
Tj = + 2 °C	Pdh	5,10	kW		Tj = + 2 °C	COPd	3,90	_	
Tj = + 7 °C	Pdh	4,00	kW		Tj = + 7 °C	COPd	5,90	_	
Tj = + 12 °C	Pdh	4,60	kW		Tj = + 12 °C	COPd	6,90	_	
T _{biv} = bivalent temperature	Pdh	9,40	kW		T _{biv} = bivalent temperature	COP _d	2,10	_	
T_{OL} = operation limit	Pdh	7,00	kW		T_{OL} = operation limit	COP _d	2,00	_	
For air-to-water heat pumps: Tj = -15 °C (if T _{oL} < -20 °C)	Pdh	-	kW		For water-to-air heat pumps: Tj = -15 °C (if T _{OL} < -20 °C)	COPd	-	_	
Bivalent temperature	T_{biv}	-10	°C		For water-to-air heat pumps: Operation limit temperature	T _{ol}	-	°C	
Degradation co-efficient heat pumps(**)	C_{dh}	0,25	_						
Power consumption in	n modes oth	ner than 'ac	tive mode'		Supplementary heater				
Off mode	P_{OFF}	0,020	kW		Back-up heating capacity (*)	elbu	0,000	kW	
Thermostat-off mode	P _{to}	0,015	kW		Type of energy input				
Crankcase heater mode	Р _{ск}	0,000	kW		Standby mode	P_{SB}	0,020	kW	
^		<u> </u>	Othe	er it	ems				
		0,000		er it		P _{SB}	0,020	kW	

For air-to-air heat m³/h pumps: air flow rate, 5520 variable Capacity control outdoor measured Sound power level, For water/brine-to-air 65,0 / 75,0 dB L_{WA} indoor/outdoor heat pumps: Rated m³/h brine or water flow mg/kWh Emissions of nitrogen rate, outdoor side heat NO_x(***) fuel input oxides (if applicable) exchanger GCŻ $kg \; CO_{2 \, eq}$ GWP of the refrigerant 2088 (100 years) MITSUBISHI ELECTRIC CORPORATION SHIZUOKA WORKS 3-18-1, Contact details Oshika, Suruga-ku, Shizuoka 422-8528, Japan

performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.

^{(*) (**)} If C_{dh} is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25. (***) From 26 September 2018.

⁽¹⁾ This information is based on COMMISSION REGULATION (EU) 2016/2281